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Motivation Selected regions: Future Work
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o Understand which parameters and their associated physical processes R2 — The Tropical Western Pacific (Energy source region in the tropical circulation, warm temperatures and abundant rainfall) 60 oIS . Mean = 047
the simulations are most sensitive to R3 — The Pacific ITCZ (A band of clouds arising from deep convection) . 30f
R4 — The Southeastern Pacific Stratocumulus (A stratus cloud deck formed over cool surface water) ;‘;’ of
| _ h d R5 — The South American Tropics (Tropical land with heavy rains) = -30f
Analysis Methods
o Use the perturbed-parameter ensemble approach developed by the Which parameters and what changes can lead to better model simulations? ol
LLNL Climate Uncertainty Quantification (UQ) project. High Clouds Middle Clouds | P o
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and identify high performing members. U] N . and varies with regions and MODIS observations, and the difference of CFMIP2 multi-model mean to the
_ 1 : 3 3 3 > Some improvements are ISCCP and CFMIP1 multi-model mean. (Figure 1 from Klein et al., 2012)
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o It converts model clouds into pseudosatellite observations with a model EEFERETEIIUGS ZE SR q pEp BEFRLIETS *EE SR o R 3(/ield overall bettersimulgt)ions
i .. : i : g 8 g 3 £ s g - e.g.,Thminl’, zmconv_c0’).
to satellite approach that mimics the satellite view of an atmospheric m Low Clouds mdg_{cating cloud simulations might 030
column with model specified physical properties. A - ~ el ] The fractional changes of the oo e e retully adjusting
N _ _ _ _ FLE|[TETTT T ORI TEITTTE ] high/middle/low-cloud RMSE from Z o
o Facilitate a meaningful comparison of models with observations by Gkl ————————  each perturbed OAT run to the
tina for limitati foat f the ob : SESEECEEEEAEETIET 077 80 default runin different regions. 0.00
accounting for limitations or features of the observing process HE 2227 L CE'L (Fig2in zhang et al. 2012)
COSP — the CFMIP Observation Impact of nonlinear interactions among parameterized physical processes .05
||<._.. Simulator Package 3 s
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e Lawrence Livermore Nationa L : : reasonable results over the Eastern Pacific
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parameterizations with a single model structure
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Our future work will make an effort through
combining the two approaches to address the
uncertainties of model simulations and predictions
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o The 57 OAT runs and 280 Latin Hypercube runs with 28 parameters
perturbed from more than 1,600 twelve-year ensemble simulations of
CAM4 are used In this study

Note: OAT stands for one-at-a-time and the Latin hypercube runs
pseudo-randomly sample the 28 parameters simultaneously.
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o Improving COSP to evaluate modeled clouds:

 modify subcolumn precipitation distribution
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_ | | Taylor diagrams of high/mid/low cloud fraction. Different regions are marked by different colors and the f‘c?d a_funcltlon to identify mixed-phase clouds from radar and

Threshold RH for fraction of high stable clouds Shallow convection precipitation efficiency shaded domains are about 95% intervals (+2 sigma) of the 280 perturbed runs. The squares are the model ldar sighals

Thres.hold R for fr.act.lon of low stable clouds | Time scale for consumption rate of CAPE for shallow default run and the half-circles are the reference data (observations). (Fig3 in Zhang et al. 2012) These improvements will make it possible for a more meaningful

Effect?ve rad?us of I?qu?d cloud droplets over sea ice nitial cloud downdraft mass flux 2) Latin hypereube rune b) OAT runs comparison of model simulations to observations, and ultimately

Effective radius of liquid cloud droplets over land Deep convection precipitation efficiency 20 ___ High Cloud Fraction __ 20 — High Cloud Fraction hel P to reduce uncertal nty in models.

Effective radius of liquid cloud droplets over ocean Parcel fractional mass entrainment rate 5 10 10 -

. | o | = rp- B- B- 8- 7] Cpe- - o e -
Scaling factor applied to ice fall velocity _ _ . _ L I I """ : e &
ke Evaporation efficiency of convective precipitation = : : : :
_ _ = —10F Centered RMSE {1 -10f ; _ _ _ Refe rences .
capnc Cloud particle number density over cold land/ocean Time scale for consumption rate of CAPE for deep = _20}f W Bias i —=0f : « Centered RMSE in Taylor diagram represents spatial .
tau convection 10 T liite toug Praction. EI0 T idle Cloug Fraction. pattern error

capnsi Cloud particle number density over sea ice _ — 20§ ——— 1 20f — : . -

_ I o - Ocean roughness scaling factor E Lok | o} . Bias defines the difference of area average Zhang, et al., 2012: Reg_lona_l asse_ssment _of the parameter-dependent
capnw oud particle number density over warm lan - Ustar parameter in PBL height diagnosis 3 D_-_-—_-.— i — performance of CAM4 in simulating tropical clouds. Geophys. Res.
conke Evaporation efficiency of stratiform precipitation _ : S -10f = 1 -10f = - = L . Lett., doi: 10.1029/2012GL052184.

_ JELS Constant in surface temperature excess = _zof | 20l 1 | > Thelarge variation of bias indicates that the perturbed

Threshold for autoconversion of cold ice Minimum overshoot parameter D ew clowd fracton e ew ciowd fracton parameters have considerable effects on the simulations Klein et al., 2012: Are climate model simulations of clouds improving?
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Threshold for autoconversion of warm ice Moisture & heat resistance to vegetation scaling factor “E’ 1of _ = -1 10} B _ 1 » The perturbed parameters have a larger impact on the An evaluation using the ISCCP simulator. Submitted to JGR.

lori Critical radius at which autoconversion becomes N -I_I_I I- 1 ] IR mean bias than on the pattern error
ralerit efficient Threshold value for CAPE for deep convection = _of 1 _iof = = = ® ] _ _ _ A k I d .
Critical Richardson number for boundary layer Land roughness scaling factor = 2ol R I ] > Simultaneous adJUStme.ntS of multlple parameters have C nOW e gments -
B0 TWP IICZ  SPS S BIO TWP ITCZ  SPS  SA more chances for the simulated cloud amounts to match
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